Polymer Bulletin © by Springer-Verlag 1980

Sequence Analysis of Head-Head Vinyl Homopolymers by ¹³C NMR Spectroscopy

Nagabushanam Kalvanam

Research Centre, Indian Petrochemicals Corporation Limited, Baroda-391346, India

Several papers have recently dealt with the synthesis, properties and spectra of head-head(H-H) polymers (WEILL AND VOGL 1978 b). It has been suggested that in H-H vinyl homopolymers, the nmr signals of the tail-tail methylene carbons would be the most useful for the study of configurational sequences (WEILL AND VOGL 1978 a).

 $\begin{array}{c} -CH_2 - CH_- CH_- CH_2 - CH_2 - CH_- CH_- CH_{\overline{2}} \\ \downarrow & \downarrow & \downarrow \\ \not p & \not p & \not q' & \not q' \end{array}$

H-H Polystyrene

The ¹³C NMR spectrum of H-H polystyrene was analysed assuming a tetrad chemical shift sensitivity for the tail-tail methylene carbons. Six tetrad placements were envisioned and the observed spectrum was interpreted as arising out of a total of six signals (four of equal intensity and two of twice the intensity when Pm = 0.5, Pm being the probability of 'meso' addition).

However, theoretically one must expect a total of eight signals from the six possible tetrads for the methylene carbons. While the symmetric tetrads (mMm, rMr, rRr, mRm,) shall give a total of four signals (one each), the unsymmetric tetrads(mMr,mRr)

0170-0839/80/0003/0597/\$01.00

SCHEME

	TETRAD	PLACEMENTS	IN H-H	VINYL HO	10POLY	MERS
Po	ymer S	eament	Tetrad ^a	No. of _b signals	Prob	ability
RA	RH	R H R H	mMm	1	H _{Pm} 2	T _{Pm}
R H	R H	RHHŘ	mMr	2	2 ^H Pm(1- ^H Pm) ^T Pm
HR	R H	R H H R	rMr	1	T _{Pm} (1	_ ^H Pm) ²
RH	H R	R H H R	` rRr	1	(1- ^H PI	n) ² (1- ^T Pm)
RH	H R	R H R H	rRm	2	2 ^H Pm(1- ^H Pm) 1- ^T Pm)
R H	R H	HRHR	mRm	1	H _{Pm} ² (1- ^T Pm)

<u>a</u> 1,2 configurations are denoted by m (meso) and r (racemic) and 1,4 configurations by M(meso) and R (racemic); A different notation was employed by Weill and Vogl. A polymer segment -R - R - 0 - 0 - R - R - was designated mmm: but strictly speaking it must be rrr;

<u>b</u> As usual it is assumed that the different conformations possible for a given configurational sequence can be attained and no restriction of rotation of bonds exists. shall also give four signals (two each) making a total of eight signals (SCHEME). The observed spectrum seems to be in agreement with this argument. Hence in H-H polymers the number of expected signals will not be equal to the number of n-ads for a given configurational sequence (RANDALL 1977).

By considering the following imaginary propagation steps for a H-H vinyl homopolymer, Bernoulli probabilities of various tetrads could be calculated.

 $\sim CH_2 - CH \cdot H_{Pm} \sim CH_2 - CH - CH - CH_2 \cdot H_2 \cdot$

^H Pm and ^TPm are the probabilities of meso addition, of a monomer 'head - on' and 'tail-on' respectively. Assuming ^TPm = 0.5, we arrive at identical results with those of Weill and Vogl. When ^TPm = ^HPm = 0.5, eight signals of equal intensity would be obtained.

REFERENCES

RANDALL, J.C.: Polymer sequence determination -Carbon - 13 NMR Method, New York, San Francisco, London: Academic Press 1977.

WEILL, G, and VOGL, O. : Polymer Bulletin, 1, 181 (1978 a).

WEILL, G, and VOGL, D. : Polymer Bulletin, 1, 191 (1978 b).

Received November 10 / Accepted November 24, 1980